Analysis 1: Green Roof System
Analysis 2: MEP Systems Prefabrication
Analysis 3: Structural Steel Sequencing
Analysis 4: Technology Integration for Information
Management

Structural Breadth

Project Overview

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Project Overview

Analysis 1: Green Roof System

Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel Sequencing Analysis 4: Technology Integration for

Information Management Conclusion & Recommendations

Acknowledgment

Questions

General Contractor

Reynolds

Architect

Penn State University Owner

Location Middletown, PA

Occupant Type Business Group B 55,057 GSF Size

Height 2 Stories and a Penthouse / 48'

Project Cost \$19.4 Million

Construction Dates Feb 2013- May 2014

Delivery Method Design-Bid-Build GMP Contract Type

Presentation Outline: **Project Overview** Analysis 1: Green Roof System Analysis 2: MEP Systems Prefabrication Analysis 3: Structural Steel Sequencing Analysis 4: Technology Integration for Information Management Conclusion & Recommendations

Acknowledgment

Questions

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Mechanical System:

Project Overview

- Central station air handling unit
- Variable air flow distribution system
- Chilled water for cooling and hot water for heating
 Central station air handling unit

Architecture: Curtain wall

- Curtain walls & aluminum panels.L-shaped building with a
 - penthouse
- Designed to be LEED certified
- Connected to existing building by a pedestrian walkway connector

Electrical System:

- 40kW emergency generator
- Majority of lighting is LED

LED Lighting Fixtures

Structural System:

- Structural steel frame, mostly different sizes of wide flanges steel beam sand columns
- Cast-in-Place Concrete for footings, foundation walls and slab-on-grade

Building Exterior

Building Structural Frame

Roof System:

■ 1 ½" Metal Deck

Air/Vapor Barrier

• 4" Rigid Insulation

Single Ply Membrane

Extensive Green Roof:

No irrigation required

Ideal for PV/Solar System

■ 3-5 inches deep

Low maintenance

 \blacksquare 15-25 lbs/ft²

integration

• ½" Gypsum Cover Board

Meshal Alenezi | Construction Management

Roof System Sectional View

of the total roof area

Analysis 1: Green Roof System

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Presentation Outline:

Project Overview Analysis 1: Green Roof System

- * Background
- **❖** Green Roof Evaluation
- ❖ Structural Breadth
- Results

Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel Sequencing

Analysis 4: Technology Integration

For Information Management

Conclusion & Recommendations

Acknowledgment

Questions

Constructability Review:

- The roof will be built as designed
- Pre-grown extensive vegetation trays delivery
- Man power is used to place the trays

Pre-grown Extensive Vegetation Trays

Description	Quantity	Daily Output (SF)	Total Material Cost (\$)	Total Labor Cost (\$)	Total Cost (\$)
4" Green Roof System	16,000	4,000	168,000	13,120	181,120

Green Roof Cost Estimation

Cost Benefit Analysis

Loading (PSF)	Level 2 Roof and Penthouse Level Roof
Concrete Slab	40
Metal Deck	2
Additional 3/4" Concrete	8
M/E/C/L	8
Membrane	4
Insulation	5
Beam/Grinder Self-Weight	5
Green Roof Weight	25
Total Dead Load	97
Live Load (ASCE Table 4-1)	100
Total Load	197

Meshal Alenezi | Construction Management

Dead and Live Loads

Analysis 1: Green Roof System Structural Breadth The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

$L = L_o[.25 + \frac{15}{\sqrt{K_{LL}A_t}}]$
Factored Distributed Load W=(1.2)(D _L)+(1.6)(L)
Factored Bending Moment $\mathbf{M}_{\mathbf{u}} = \frac{(w_u)(l^2)}{8}$
Factored Shear $V_{u} = \frac{(w_{u})(l)}{2}$

Structural Analysis Equations

Live Load Reduction

Beams 5" spacing 0.C.	<u>Grinders</u>			
38.5' W21x44	112 W/O4 FF			
44.5' W24x55 44.5' W24x62	11' W24x55 31.5' W24x131			
44.5' W24x76 44.5' W24x84	31.5' W24x162 37.5' W24x162			
44.5' W24x117 44.5' W24x131	37.5' W24x229			
Beams and Grinders				

Туре	Moment (k-ft)	Max. Moment (k-ft)	Shear (Kips)	Max. Shear (Kips)	Resu
		Beams	(1)	(1 /	
W21x44	256.06	358	25.99	217	Passi
W24x55	334.17	503	30.04	252	Passi
W24x62	334.17	574	30.04	306	Passi
W24x76	334.17	750	30.04	315	Passi
W24x84	334.17	840	30.04	340	Passi
W24x117	334.17	1230	30.04	400	Passi
W24x131	334.17	1390	30.04	444	Passi
		Grinder			
W24x55	40.53	503	14.74	252	Passi
W24x131	441.55	1390	56.07	444	Passi
W24x162 (31.5 ft)	441.55	1760	56.07	529	Passi
W24x162 (37.5 ft)	722.46	1760	77.06	529	Passi
W24x229	722.46	2530	77.06	749	Passi

Meshal Alenezi | Construction Management

Cons

Analysis 1: Green Roof System

- High Initial Cost, \$181,120
- 4 Days Installation Process

Pros

- Energy Savings
- Increased Property Value
- Noise Reduction
- Better Stormwater Control
- Extend Roof Membrane Lifespan

Recommendation

Due to the initial high cost and low ROI, implementing this solution is not recommended.

Analysis 1: Green Roof System

Prefabrication Scope

Constructability Review

Analysis 2: MEP Systems

* Background

Project Overview

Prefabrication

Analysis 2: MEP Systems Prefabrication

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Problem Statement

overlap each other, which causes congestion on the construction site.

The MEP systems activities

Task	Start Date	Finish Date	Duration (Days)
Mechanical System	7/17/2013	12/26/2013	117
Electrical System	9/4/2013	12/24/2013	80
Plumbing System	9/4/2013	1/9/2014	92

Original MEP Systems Schedule

Case Study: Miami Valley Hospital Addition

- 178 Headwalls and Bathroom Pods.
- 120 Integrated MEP Corridor Racks
- Productivity tripled
- 20% less Labor Cost
- Reduced schedule by 2 months
- Saved 1-2% of the project overall cost

Analysis 2: MEP Systems Prefabrication

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Project Overview Analysis 1: Green Roof System

Analysis 2: MEP Systems Prefabrication

- * Background
- Prefabrication Scope
- Constructability Review
- ❖ Schedule/Cost Evaluation
- Results

Analysis 3: Structural Steel Sequencing Analysis 4: Technology Integration

For Information Management

Conclusion & Recommendations

Acknowledgment

Questions

Mechanical System Scope Only main Ductwork branches

are considered for Prefabrication, sizes range from 12"x10" to 84"x24"

The main Ductwork branches that are considered for Prefabrication

Electrical System Scope

■ Copper Conduit with a ½" diameter or more

Meshal Alenezi | Construction Management

• Cast Iron Pipes with 3" and 4" diameters

Plumbing System Scope

- Copper Pipes type L with diameters between ½" and 2 ½"
- Cast Iron Pipes with 4" & 6" diameters
- Black Steel Pipes with a 2" diameter

Analysis 2: MEP Systems Prefabrication

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Presentation Outline: Project Overview

Analysis 1: Green Roof System

Analysis 2: MEP Systems
Prefabrication

* Background

Prefabrication Scope

Constructability Review

Schedule/Cost Evaluation

Results

Analysis 3: Structural Steel Sequencing

Analysis 4: Technology Integration

For Information Management

Conclusion & Recommendations

Acknowledgment

Questions

Construction Site Layout

Two GatesLow Height

Material Laydown area

Mobile Crane

The Construction Site Layout

A STATE OF THE STA					Approach work or the	
Presentati	ion (Out	line	:		

Analysis 2: MEP Systems Prefabrication

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Onsite Labor

Meshal Alenezi | Construction Management

Total Labor Cost

Prefabrication Labor

Analysis 2: MEP Systems				
Prefabrication				
Background				
Prefabrication Scope				
Constructability Review				
Schedule/Cost Evaluation				
Results				
Analysis 3: Structural Steel Sequencing				
Analysis 4: Technology Integration				
For Information Management				
Conclusion & Recommendations				
Acknowledgment				
Questions				

Analysis 1: Green Roof System

Project Overview

Prefabrication productivity is double on-site productivity	
	_
	Ĺ

Contractor	Original Installation Duration (Days)	Prefabrication Installation Duration (Days)	Duration Reduction (Days)			
Mechanical	117	64	53			
Electrical	80	45	35			
Plumbing	92	51	41			
Total	127	86	41			
Days Reduced for each Contractor and the Overall Project Schedule						
		_, , , , _				

Task Duration (Days) Start Date Finish Date Mechanical 7/17/2013 10/14/2013 64 System Electrical System 9/4/2013 11/5/2013 45 Plumbing System 9/4/2013 11/13/2013 51

Cost (\$) Cost (\$) Savings (\$) Mechanical 237,931.2 169,384.64 68,546.56 Electrical 126,796.8 38,340 88,456.80 Plumbing 148,686.72 44,198.64 104,488.08 Crane Operator -10,272.2 -10,272.2 -23,220 -23,220 Crane Total 479,922.52 151,085.20 328,837.32 Labor Cost Savings for each Contractor

Total General Original Duration Cost per Day Conditions Reduction Duration (\$/Day) **Cost Savings**

General Conditions (Days) (Days) (\$) 3,176.54 130,238.14 41

New MEP Systems Schedule

General Conditions Cost Savings

Meshal Alenezi | Construction Management

Cons

Analysis 2: MEP Systems

Prefabrication

- Requires Early Coordination between the MEP Systems Teams Using Cranes for Additional Days
- Pros
- Less Site Congestion
- Schedule Reduced by 41 Days
- \$328,837.32 Labor Cost Savings
- \$130,238.14 General Conditions Savings

Recommendation Due to the cost savings of \$459075.46 and 41 Days schedule Reduction, the implementation of the solution is recommended.

Analysis 3: Structural Steel
Sequencing

The Educational Activities Building
Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Project Overview

Analysis 1: Green Roof System Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel Sequencing

- Current Steel Sequence
- Crane SelectionProposed Steel Sequence
- * Results

Analysis 4: Technology Integration

For Information Management

Conclusion & Recommendations

Acknowledgment

Questions

Problem Statement

The structural steel erection is a critical path item, but there is a potential to improve the sequence and accelerate the schedule.

The Current Steel Sequence and Crane Staging

General Site Information

- 94,050 SF. construction site
 First Street is the only main road adjacent to the Site
- An exciting building is located South of the project
- Material laydown area is located West of the North Wing

Steel Sequence Planning Considerations

- Crane Type and Size
- Crane Locations
- Material Laydown Area
- Steel Deliveries

Analysis 1: Green Roof System

Analysis 2: MEP Systems

Analysis 3: Structural Steel

***** Crane Selection

Current Steel Sequence

Proposed Steel Sequence

Analysis 4: Technology Integration

Conclusion & Recommendations

For Information Management

Project Overview

Prefabrication

Sequencing

Results

Acknowledgment

Questions

Analysis 3: Structural Steel Sequencing

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Crane Selected

- Rough Terrain Hydraulic Crane
- 50 Ton Capacity
- 110 Boom

Hydraulic Crane

The Critical Beams Location of the North Wing

Beam #	Beam Size	Beam Length (ft)	Beam Weight (lb)	Distance from Crane	Safety Check
Beam 1	W8x24	11	264	90	Passes
Beam 2, 3 & 4	W8x24	20	480	90	Passes
Beam 5	W24x55	11	605	85	Passes
Beam 6	W24x162	37.5	6,075	80	Passes
Beam 7	W24x162	44.5	5,103	75	Passes
Beam 8	W24x76	445	3,382	60	Passes
Beam 9 & 10	W24x131	44.5	5,829.5	65-75	Passes
Beam 11	W24x84	44.5	3,783	80	Passes
Beam 12	W24x117	44.5	5,206	85	Passes
Beam 13 & 14	W24x146	44.5	6,497	30-40	Passes
Beam 15	W24x117	44.5	5,206	60	Passes
Beam 16, 17 & 19	W24x162	45.75	7,411	30-60	Passes
Beam 18	W24x103	45.75	4,712	50	Passes
Beam 20	W24x131	38.5	5,043	70	Passes

Analysis 3: Structural Steel Sequencing

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

ion Outlin .

Project Overview
Analysis 1: Green Roof System

Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel

Sequencing

Current Steel Sequence

Crane Selection

Proposed Steel SequenceResults

Analysis 4: Technology Integration

For Information Management

Conclusion & Recommendations

Acknowledgment

Questions

The Critical Beams Location of the South Wing

D	Beam	Beam Length	Beam Weight	Distance	Safety
Beam #	Size (ft)		(lb)	from Crane	Check
Beam 1	W24x104	35.17	3,657	75	Passes
Beam 2	W24x104	35.17	3,657	70	Passes
Beam 3	W21x68	22.17	1,507	85	Passes
Beam 4	W24x55	25	1,375	90	Passes
Beam 5	W24x104	35.17	3,657	75	Passes
Beam 6	W24x55	26'	1,730	85	Passes
Beam 7	W24x68	35.17	2,391	75	Passes

Analysis 3: Structural Steel Sequencing

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Proposed Steel Sequence

50 Ton, 110' Boom, 32' Jib

18

Within 30' from the crane

N Wing to the S Wing

Original Steel Sequence

30 Ton, 90' Boom, 43' Jib

Within 30' from the crane

S Wing to the N Wing

Project Overview

Analysis 1: Green Roof System
Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel

Sequencing

Current Steel Sequence

Crane Selection

Proposed Steel Sequence

* Results

Analysis 4: Technology Integration
For Information Management
Conclusion & Recommendations

Acknowledgment

Questions

Power		 l	
The Proposed Site Plan and	d Crane Location		The Cost Savings & Schedule Reduction

Criteria

Crane Size

of Crane Locations

Steel Deliveries Phases

Duration (Days)

Steel Laydown

Sequence Direction

Comparison Between	the Original and	Proposed Steel	Sequence
<u> </u>		<u> </u>	_

	Daily Cost (\$/Day)	Schedule Reduction (Days)	Total Savings (\$)
Structural Labor	239.5	8	1,916
Crane/Crane Operator	389.4	8	3115.2
General Conditions	3,176.54	8	25,412.32
	30,527.52		

Analysis 4: Technology Integration For Information Management

Opportunity Identification

technology for Information

introduced the use of

Management.

22nd annual PACE Roundtable

The Educational Activities Building Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Technology Tools Used in the Construction Industry

Project Overview

Analysis 1: Green Roof System

Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel Sequencing

Analysis 4: Technology Integration For Information Management

❖ Preliminary Analysis

Proposed Strategy

Results

Conclusion & Recommendations Acknowledgment

Questions

Technology Implemented on the Project

❖ BIM Uses

 Different Project Phases: Planning, Design, Construction and Turnover.

Coordination & Modeling

Clash Detection

Asset Management

Electronic Documents

"Proper use of technology will also reduce change orders and cost of construction." Mr. Adam Dent, Project Manager.

Tablets are becoming popular tools to view project documents and exchange information on site.

RFID Tags are used to keep track of materials.

BIM Uses

Analysis 4: Technology Integration For Information Management

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Presentation Outline:

Project Overview Analysis 1: Green Roof System

Analysis 2: MEP Systems

Prefabrication

Analysis 3: Structural Steel Sequencing

Analysis 4: Technology Integration For Information Management

Preliminary Analysis

Proposed Strategy

Results

Conclusion & Recommendations

Acknowledgment

Questions

Site Plan and Desktop Station Locations

- Two Desktop Stations
- 18 FieldLens Memberships
- 6 Tablets
- BIM
 - "Document Management"
 - "Building Maintenance Scheduling"

Item	Item Quantity Cost \$/Unit		Total Cost \$
Generic Tablets	6	6 4,00	
FieldLens Membership	18	18 20 (per month for 16 months)	
Desktops	2	6,00	1,200
Desktop Stations	2	65	130
	104		
	10,594		

	Quantity	Cost (\$)	Total Cost
Item	(Hours	/Unit	Savings (\$)
	per week)	(Hour)	Per Week
Penn state Project Manager	5	95	475
Penn state BIM Manager	5	65	325
Reynolds Construction BIM	5	65	325
Manager			
Reynolds Construction Project	5	103	515
Executive	9	103	313
Reynolds Construction Project	5	95	475
Manager	3	75	7/3
Reynolds Construction On-Site	5	90	450
Construction Manager	3	<i>7</i> 0	430
IT Technician	5	70	-350
Total			2,215

Meshal Alenezi | Construction Management

The Cost of Implementation

The Cost Savings

Presentation Outline:
Project Overview
Analysis 1: Green Roof System
Analysis 2: MEP Systems
Prefabrication
Analysis 3: Structural Steel Sequencing
Analysis 4: Technology Integration
For Information Management
Conclusion & Recommendations
Acknowledgment
Questions

The Educational Activities Building

Penn State Harrisburg | Middletown, PA

Meshal Alenezi | Construction Management

Analysis1: Green Roof System:

Conclusion & Recommendations

- High Initial Cost, \$181,120
- 4 Days Installation Process

Analysis2: MEP Systems Prefabrication

- Less Site CongestionSchedule Reduced by 41 Days
- **\$328,837.32** Labor Cost Savings
- \$130,238.14 General Conditions Savings

Analysis3: Structural Steel SequencingSchedule Reduced by 8 Days

- \$5,031.2 Labor Cost Savings
- \$25,412.32 General Conditions Savings

Information Management:Improved Communication and Documents Sharing

Analysis4: Technology Integration for

\$2,215/Week General Conditions
Savings

Recommendation

Due to the initial high cost and low ROI, implementing this solution is not recommended.

Recommendation

Due to the cost savings of \$459075.46 and 41 Days schedule Reduction, the implementation of the solution is recommended.

Recommendation

Due to the cost savings of \$30,527.52 and 8 Days schedule Reduction, the implementation of the solution is recommended.

Recommendation

Due to the cost savings of \$141,760 over the entire project duration, the implementation of the solution is recommended.

Meshal Alenezi | Construction Management

